The Incredible Lightness of Water Vapor

Da Yang University of California, Davis Lawrence Berkeley National Laboratory

- 1. Greenhouse effect
- 2. Latent heat release in convection
- 3. The lightness of water vapor

The lightness of water vapor stabilizes Earth's climate: 1D, 2D, and 3D models

- 1. Greenhouse effect
- 2. Latent heat release in convection
- 3. The lightness of water vapor

Strongly reduced equator-to-pole temperature gradient in the past warm climates

Markers: Paleo proxies

Blue dashed: Reference SST

Other lines: GCM simulations of paleo SSTs

Strongly reduced equator-to-pole temperature gradient in the past warm climates

Markers: Paleo proxies

Blue dashed: Reference SST

Other lines: GCM simulations of paleo SSTs

Strongly reduced equator-to-pole temperature gradient in the past climates

Horizontal buoyancy gradient is negligible in the tropical free troposphere. However, there *is* significant temperature gradient.

Black: buoyancy; gray: temperature CRH = Column Relative Humidity NASA AIRS data; 2°S to 2°N

Horizontal buoyancy gradient is negligible in the tropical free troposphere. However, there **is** significant temperature gradient.

Where are the precipitating moist columns?

Black: buoyancy; gray: temperature CRH = Column Relative Humidity NASA AIRS data; 2°S to 2°N

Cold air rises!

Black: buoyancy; gray: temperature CRH = Column Relative Humidity NASA AIRS data; 2°S to 2°N Horizontal buoyancy gradient is negligible in the tropical free troposphere. However, there is significant temperature gradient.

The lightness of water vapor has profound impacts on the thermal structure

Black: buoyancy; gray: temperature CRH = Column Relative Humidity NASA AIRS data; 2°S to 2°N

The lightness of water vapor can increase OLR

Two stand-alone atmospheres with same SST; no/weak rotation The circulation corresponds to Hadley/Walker circulation

This effect increases with warming—a negative climate feedback

Key ingredients:

- 1) overturning circulations (moist and dry columns);
- 2) weak B gradients but significant T gradients

ID: imposed

2D: self-emerged

3D: self-emerged

A few important numbers

Radiative forcing due to doubling CO₂ is about 3 - 4 W/m²

The strength of surface albedo feedback and cloud feedback is about **0.1 W/m²/K**

We will compare the radiative effect of the vapor buoyancy to the above numbers

The lightness of water vapor can increase OLR

$$\Delta T = T_{dry} - T_{dry,noVB} = T_{dry} - T_{moist}$$

ΔT increases with surface temperature and moisture contrasts

– 280 K

— 300 K

— 320 K

dot-dashed: $\beta = 0.2$

solid: $\beta = 0.5$

dashed: $\beta = 0.8$

Order-of-magnitude calculations using a 1D model

Yang and Seidel 2019: 10.31223/osf.io/ha9sx

$$\Delta OLR \sim 2 - 4 W/m^2$$

Similar to doubling CO₂

This effect is small at both the moist and dry limits

$$\beta = \frac{\text{moisture in dry column}}{\text{moisture in moist column}}$$

Order-of-magnitude calculations using a 1D model

Yang and Seidel 2019: 10.31223/osf.io/ha9sx

 $d\Delta OLR/dT_s \sim 0.2 \ W/m^2/K$

Similar to cloud or surface albedo feedbacks

This effect is small at both the moist and dry limits

Moist and dry patches are simulated in 2D cloud-resolving model (CRM) simulations

Color shading: Precipitable water There is no rotation Left: no vapor buoyancy right: with vapor buoyancy

Moist and dry patches are simulated in 2D cloud-resolving model (CRM) simulations

Color shading: Precipitable water
There is no rotation
Left: no vapor buoyancy
right: with vapor buoyancy

WBG and \triangle T self-emerge!

 $\Delta T \sim 2K$

Red: Temperature Black: Buoyancy

Moist and dry patches are simulated in 2D cloud-resolving model (CRM) simulations

SST=310K, With V.B

SST=310K, **No V.B.** (h)

Color shading: Precipitable water
There is no rotation
Left: no vapor buoyancy
right: with vapor buoyancy

WBG and \triangle T self-emerge!

 $\Delta T \sim 4K$

Red: Temperature Black: Buoyancy

The lightness of water vapor increases OLR This effect increases with warming, a negative feedback

2D CRM results confirm our ID results

Radiative effect is about 2 W/m² It increases exponentially

Similar to 2XCO₂

Feedback parameter is about 0.2 W/m²/K

It also increases with warming.

Similar to cloud or surface albedo feedbacks

Seidel and Yang, 2019 (to be submitted)

We further test the hypothesis in a 3D GCM

GFDL AM2 model; 20-yr simulations with fixed SSTs; Last 5 years are analyzed.

The radiative effect peaks in the tropics

The max value is about 5 W/m²

The global-averaged value is about 1.5 W/m²

The radiative effect peaks in the tropics

The max value is about 5 W/m²

The global-averaged value is about 1.5 W/m²

Effectively stabilize tropical climate!

3D GCM simulations confirm our hypothesis

The global-averaged radiative effect is about 1.5 W/m² This effect increases with warming

 $d\Delta OLR/dT_s \sim 0.2 \ W/m^2/K$

Similar to cloud or surface albedo feedbacks

Only consider the clear-sky effect

The lightness of water vapor stabilizes tropical climate

The lightness of water vapor is incredible!

The radiative effect of vapor buoyancy is about 1 W/m²

NASA AIRS data; deep tropic

Use WBG to constrain temperature differences

Require the virtual temperature being horizontally uniform

$$T_m \left(\frac{1 + r_m/\varepsilon}{1 + r_m} \right) = T_d \left(\frac{1 + r_d/\varepsilon}{1 + r_d} \right)$$

We can solve for the temperature difference by assuming the moist column is saturated

$$\Delta T_{WBG} = T_m \left(\frac{1}{\varepsilon} - 1\right) (r_m - r_d)$$

Temperature difference between the two dry columns

Note: $T_m = T_{d,noVB}$